
Hibernate Training

TechFerry Infotech Pvt. Ltd.
(http://www.techferry.com/)

Conversations

● Introduction to Hibernate
●Hibernate in Action
●Object Relational Mapping (ORM)

○Association Mappings
○ Inheritance Mappings

●HQL (Hibernate Query Language)
○ Joining Associations in HQL

● Spring Hibernate Integration

Hello Hibernate
Inherent differences in Object and Relational Model:
● Java Objects have associations
●RDBMS tables have relations with foreign keys

Questions to consider:
●How do we implement inheritance in RDBMS tables?
●Are your Form beans (to be used on views) different from entity

beans? Do you do data transfer from one type of bean to another?
●Do you manually associate objects because data is retrieved from

RDBMS using join queries?
●How much time programmers spend on persistence and data

retrieval tasks?

Can all this boilerplate persistence code be automated?

Why Hibernate?

●Open Source persistence technology
○ relieve developers from majority of common data persistence

related programming tasks
●ORM framework

○ follow natural Object-oriented idioms including inheritance,
polymorphism, association, composition, and the Java
collections framework.

●Comprehensive Query Facilities:
○ support for Hibernate Query Language (HQL), Java

Persistence Query Language (JPAQL), Criteria queries, and
"native SQL" queries; all of which can be scrolled and
paginated to suit your exact performance needs.

Why Hibernate?
●High Performance:

○ lazy initialization, many fetching strategies
○ optimistic locking with automatic versioning/ time stamping
○Hibernate requires no special database tables or fields and

generates much of the SQL at system initialization time
instead of runtime.

●Reliability and Scalability:
○ proven by the acceptance and use by tens of thousands of Java

developers
○ designed to work in an application server cluster and deliver a

highly scalable architecture

Hibernate in action
Code Demo....
●Annotations: @Entity, @Table, @Id, @Column,

@GeneratedValue,

Methods:
● persist() vs save()
● update vs saveOrUpdate()
● load() vs get()
● createQuery().list()
● delete()

Hibernate in action

●Concurrency Control: @Version
● Sorting: @OrderBy, @Sort
● Pagination
● Lazy vs Eager Fetching: fetch = FetchType.EAGER
●@Transient, @Lob

Reference:
● http://docs.jboss.org/hibernate/annotations/3.

5/reference/en/html_single/
● http://www.techferry.com/articles/hibernate-jpa-annotations.html

http://www.techferry.com/articles/hibernate-jpa-annotations.html

Association Mappings

Types of Associations:
●@OneToOne
●@ManyToOne
●@OneToMany
●@ManyToMany

RDBMS Implementations:
● Shared Primary Key
● Foreign Key
●Association Table

Relationship Types:

●Uni-directional
●Bi-directional

@OneToOne

●@PrimaryKeyJoinColumn - associated entries share the same
primary key.

●@JoinColumn & @OneToOne mappedBy attribute - foreign key
is held by one of the entities.

● @JoinTable and mappedBy - association table

● Persist two entities with shared key: @MapsId

@ManyToOne

●@JoinColumn - foreign key is held by one of the entities.
●@JoinTable - association table

@OneToMany

●mappedBy attribute for bi-directional associations with
ManyToOne being the owner.

●OneToMany being the owner or unidirectional with foreign key -
try to avoid such associations but can be achieved with
@JoinColumn

●@JoinTable for Unidirectional with association table

@ManyToMany

●@JoinTable - association table.
●mappedBy attribute for bi-directional association.

Mapping Inheritance

● table per class hierarchy
○ single table per Class Hierarchy Strategy: the <subclass>

element in Hibernate
● table per class/subclass

○ joined subclass Strategy: the <joined-subclass> element in
Hibernate

● table per concrete class
○ table per Class Strategy: the <union-class> element in

Hibernate

Table per class hierarchy- Single Table

@Entity
@Inheritance(strategy=InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(name="planetype", discriminatorType=DiscriminatorType.
STRING)

@DiscriminatorValue("Plane")
public class Plane { ... }

@Entity
@DiscriminatorValue("A320")
public class A320 extends Plane { ... }

Table per class/subclass -joined subclass
Strategy
@Entity
@Inheritance(strategy=InheritanceType.JOINED)
public class Boat implements Serializable { ... }

@Entity
@PrimaryKeyJoinColumn
public class Ferry extends Boat { ... }

Table per concrete class

@Entity
@Inheritance(strategy = InheritanceType.TABLE_PER_CLASS)
public class Flight implements Serializable { ... }

Note: This strategy does not support the IDENTITY generator
strategy: the id has to be shared across several tables. Consequently,
when using this strategy, you should not use AUTO nor IDENTITY.

Inheritance Mapping Reference:
http://docs.jboss.org/hibernate/core/3.3/reference/en/html/inheritance.
html

HQL

Creating Query:
Query hqlQuery = session.createQuery("from Category c where c.name like
'Laptop%'");

Method Chaining:
List results = session.createQuery("from User u order by u.name asc").setFirstResult
(0).setMaxResults(10).list();

Named Parameters:
String queryString = "from Item item where item.description like :searchString";
List result = session.createQuery(queryString).setString("searchString", searchString).
list();

HQL Contd...

Positional Parameters:

String queryString = "from Item item "
 + "where item.description like ? "
 + "and item.date > ?";
List result = session.createQuery(queryString).setString(0, searchString)
.setDate(1, minDate).list();

Binding Entity Parameters:
session.createQuery("from Item item where item.seller = :seller")
.setEntity("seller", seller).list();

HQL Operators and Keywords

=, <>, <, >, >=, <=, between, not between, in, and not in.

from Bid bid where bid.amount between 1 and 10
from Bid bid where bid.amount > 100
from User u where u.email in ("foo@hibernate.org", "bar@hibernate.org")

Keywords: null,not null, like, not like, upper(), lower(), and, or
from User u where u.email is null
from User u where u.email is not null
from User u where u.firstname like "G%"
from User u where u.firstname not like "%Foo B%"
from User u where lower(u.email) = 'foo@hibernate.org'
from User user where (user.firstname like "G%" and user.lastname like "K%")
 or user.email in ("foo@hibernate.org", "bar@hibernate.org")

Other keywords

Keywords: group by, having, order by, count(), avg(), distinct

select item.id, count(bid), avg(bid.amount)
from Item item
join item.bids bid
where item.successfulBid is null
group by item.id
having count(bid) > 10

select distinct item.description from Item item

HQL - Joining Associations

In Hibernate queries, you don’t usually specify a join condition
explicitly. Rather, you specify the name of a mapped Java class
association.
Example: item.bids, bid.item

HQL Joins

HQL provides four ways of expressing (inner and outer) joins:
■ An ordinary join in the from clause
■ A fetch join in the from clause
■ An implicit association join
■ A theta-style join in the where clause

Ordinary Join in the from clause

from Item item
join item.bids bid
where item.description like '%gc%'
and bid.amount > 100

Query q = session.createQuery("from Item item join item.bids bid");
Iterator pairs = q.list().iterator();

while (pairs.hasNext()) {
Object[] pair = (Object[]) pairs.next();
Item item = (Item) pair[0];
Bid bid = (Bid) pair[1];
}

Ordinary Joins Contd..

select item
from Item item
join item.bids bid
where item.description like '%gc%'
and bid.amount > 100

Query q = session.createQuery("select i from Item i join i.bids b");
Iterator items = q.list().iterator();
while (items.hasNext()) {
Item item = (Item) items.next();
}

Fetch Joins

from Item item
left join fetch item.bids
where item.description like '%gc%'

from Bid bid
left join fetch bid.item
left join fetch bid.bidder
where bid.amount > 100

●Hibernate currently limits you to fetching just one collection
eagerly. You may fetch as many one-to-one or many-to-one
associations as you like.

● If you fetch a collection, Hibernate doesn’t return a distinct result
list.

Implicit Joins

from Bid bid where bid.item.description like '%gc%'

Implicit joins are always directed along many-to-one or one-to-one
associations, never through a collection-valued association (you can’t
write item.bids.amount).

from Bid bid
where bid.item.category.name like 'Laptop%'
and bid.item.successfulBid.amount > 100

Implicit Joins Contd..

from Bid bid
join bid.item item
where item.category.name like 'Laptop%'
and item.successfulBid.amount > 100

from Bid as bid
join bid.item as item
join item.category as cat
join item.successfulBid as winningBid
where cat.name like 'Laptop%'
and winningBid.amount > 100

Theta Style Joins

When the association is not defined.

from User user, LogRecord log where user.username = log.username

Iterator i = session.createQuery(
"from User user, LogRecord log " +
"where user.username = log.username"
)
.list().iterator();
while (i.hasNext()) {
Object[] pair = (Object[]) i.next();
User user = (User) pair[0];
LogRecord log = (LogRecord) pair[1];
}

Spring Hibernate Integration

● Injecting Hibernate SessionFactory in @Repository classes.
● Spring's HibernateTemplate
● JPA EntityManager

Thank You and Questions?

