
Spring Training

TechFerry Infotech Pvt. Ltd.
(http://www.techferry.com/)

Conversations
○ Introduction to Spring
○ Concepts: Annotations, MVC, IOC/DI, Auto wiring
○ Spring Bean/Resource Management
○ Spring MVC, Form Validations.
○ Unit Testing
○ Spring Security – Users, Roles, Permissions.
○ Code Demo

■ CRUD using Spring, Hibernate, MySQL.
■ Spring security example.
■ REST/jQuery/Ajax example

Spring - Introduction

Exercise: What do we need in an enterprise application?

● Database Access, Connection Pools?
● Transactions?
● Security, Authentication, Authorization?
● Business Logic Objects?
● Workflow/Screen Flow?
● Messaging/emails?
● Service Bus?
● Concurrency/Scalability?

Can somebody wire all the needed components?
Do we have to learn everything before we can start?

Hello Spring

● Spring is potentially a one-stop shop, addressing most
infrastructure concerns of typical web applications

○ so you focus only on your business logic.
● Spring is both comprehensive and modular

○ use just about any part of it in isolation, yet its architecture is
internally consistent.

○ maximum value from your learning curve.

What is Spring?

● Open source and lightweight web-application framework
● Framework for wiring the entire application
● Collection of many different components
● Reduces code and speeds up development

Spring is essentially a technology dedicated to enabling you to build
applications using POJOs.

Why Spring?
● Spring Enables POJO Programming

○ Application code does not depend on spring API’s
● Dependency Injection and Inversion of Control simplifies coding

○ Promotes decoupling and re-usability

Features:

● Lightweight
● Inversion of Control (IoC)
● Aspect oriented (AOP)
● MVC Framework
● Transaction Management
● JDBC
● Ibatis / Hibernate

Spring Modules

What else Spring do?

Spring Web Flow
Spring Integration
Spring Web-Services
Spring MVC
Spring Security
Spring Batch
Spring Social
Spring Mobile

 ... and let it ever expand ...

Inversion of Control/Dependency Injection

"Don't call me, I'll call you."

● IoC moves the responsibility for making things happen into the
framework

● Eliminates lookup code from within the application
● Loose coupling, minimum effort and least intrusive mechanism

IOC/DI

IOC/DI
Non IOC Example:
class MovieLister...
 private MovieFinder finder;
 public MovieLister() {
 finder = new MovieFinderImpl();
 }

public interface MovieFinder {
 List findAll();
}

class MovieFinderImpl ... {
 public List findAll() {
 ...
 }
}

IOC/DI
IoC Example: DI exists in major two variants:
Setter Injection
 public class MovieLister {
 private MovieFinder movieFinder;
 public void setMovieFinder(MovieFinder movieFinder) {
 this.movieFinder = movieFinder;
 }
 }
Constructor Injection
 public class MovieLister{
private MovieFinder movieFinder;
public MovieLister(MovieFinder movieFinder) {
 this.movieFinder = movieFinder;
}
 }

Code Demo
● Annotations: @Component, @Service, @Repository
● Annotation: @Autowire
● web.xml - Context loader listener to scan components
● <context:annotation-config />

 <context:component-scan base-package="..." />

Spring Bean Management

Bean Scopes

singleton
Scopes a single bean definition to a single object instance per Spring
IoC container.
prototype
Scopes a single bean definition to any number of object instances.
request
Scopes a single bean definition to the lifecycle of a single HTTP
request.
session
Scopes a single bean definition to the lifecycle of a HTTP Session.
global session
Scopes a single bean definition to the lifecycle of a global HTTP
Session. Typically only valid when used in a portlet context.

http://static.springsource.org/spring/docs/2.5.x/reference/beans.html#beans-factory-scopes-singleton
http://static.springsource.org/spring/docs/2.5.x/reference/beans.html#beans-factory-scopes-prototype
http://static.springsource.org/spring/docs/2.5.x/reference/beans.html#beans-factory-scopes-request
http://static.springsource.org/spring/docs/2.5.x/reference/beans.html#beans-factory-scopes-global-session
http://static.springsource.org/spring/docs/2.5.x/reference/beans.html#beans-factory-scopes-global-session

Singleton Bean

Prototype Beans
● Use @Scope("prototype")
●Caution: dependencies are resolved at instantiation time. It

does NOT create a new instance at runtime more than once.

Bean Scopes Contd..

● As a rule of thumb, you should use the prototype scope for all
beans that are stateful, while the singleton scope should be used for
stateless beans.

● RequestContextListener is needed in web.xml for request/session
scopes.

● Annotation:@Scope("request") @Scope("prototype")

Homework:

● Singleton bean referring a prototype/request bean?
● @Qualifier, Method Injection.

Hate Homework?
● Stick to stateless beans. :)

Wiring Beans
no
No autowiring at all. Bean references must be defined via a ref
element. This is the default.
byName
Autowiring by property name.
byType
Allows a property to be autowired if there is exactly one bean of the
property type in the container. If there is more than one, a fatal
exception is thrown.
constructor
This is analogous to byType, but applies to constructor arguments.
autodetect
Chooses constructor or byType through introspection of the bean
class.

Homework :)

1. What wiring method is used with @Autowire annotation?
2. Other annotations you may find useful:

○ @Required
○ @Resource

Also review the Spring annotation article:
http://www.techferry.com/articles/spring-annotations.html

http://www.techferry.com/articles/spring-annotations.html

MVC - Model View Controller

● Better organization and code reuse.
● Separation of Concern
● Can support multiple views

Spring MVC

Code Demo
● Annotations: @Controller, @RequestMapping, @ModelAttribute,

@PathVariable
● Spring DispatcherServlet config - just scan controllers
● web.xml - Context loader listener to scan other components
● ResourceBundleMessageSource and <spring:message> tag

Reference: http://static.springsource.org/spring/docs/3.0.x/spring-
framework-reference/html/mvc.html

● @RequestMapping Details
● Handler method arguments and Return Types

Pre-populate Model and Session Objects
@Controller
@RequestMapping("/owners/{ownerId}/pets/{petId}/edit")
@SessionAttributes("pet")
public class EditPetForm {

 @ModelAttribute("types")
 public Collection<PetType> populatePetTypes() {
 return this.clinic.getPetTypes();
 }

 @RequestMapping(method = RequestMethod.POST)
 public String processSubmit(@ModelAttribute("pet") Pet pet, BindingResult result,
 SessionStatus status) {
 new PetValidator().validate(pet, result);
 if (result.hasErrors()) {
 return "petForm";
 }else {
 this.clinic.storePet(pet);
 status.setComplete();
 return "redirect:owner.do?ownerId=" + pet.getOwner().getId();
 }
 }
}

Form Validation

Code Demo ...
● BindingResult
● Validator.validate()
● <form:errors> tag

Alternative: Hibernate Validator can also be used for annotation based
validation.
public class PersonForm {
 @NotNull
 @Size(max=64)
 private String name;

 @Min(0)
 private int age;
}

@RequestMapping("/foo")
 public void processFoo(@Valid Foo foo) {
 /* ... */
 }

Unit Testing

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(locations = { "/spring-servlet-test.xml" })
@Test

Other useful Annotations:

@DirtiesContext
@ExpectedException(SomeBusinessException.class)
@Timed(millis=1000)
@NotTransactional

Spring Security

Code Demo ...
● <sec:authorize> tag
● Annotations: @PreAuthorize
● applicationContext-security.xml
● DB Schema: Users, Authorities

Thank you and Questions?

